

Deep Reinforcement Learning agents playing DOOM

Kashtanova Victoriya and Hurault Samuel

Object Recognition Final Project

January, 15 2019

<ロト<型ト<差ト<差ト<差ト 1/29

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion

<ロト

Inte	od.	ictic.	
	OUL.	к.ск.	

)

Arnold

DFP with features

Comparisor

Conclusion

Visual Doom AI Competition

Lin	nited Death	nmatch	Full Death	nmatch
Agent Name	Number of frags	K/D Ratio	Number of frags	K/D Ratio
5vision	142	0.41	12	0.20
AbyssII	118	0.40	-	-
Arnold	413	2.45	164	33.40
CLYDE	393	0.94	-	-
ColbyMules	131	0.43	18	0.20
F1	559	1.45	-	-
IntelAct	-	-	256	3.58
Ivomi	-578	0.18	-2	0.09
TUHO	312	0.91	51	0.95
WallDestroyerXxx	-130	0.04	-9	0.01

Figure: Results of the Visual Doom AI Competition 2016. Scores marked with '-' indicate that the agent did not participate in the corresponding track. The best results in each column are marked in bold¹.

¹Devendra Singh Chaplot and Guillaume Lample. "Arnold: An Autonomous Agent to Play FPS Games". In: AAAI. 2017.

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion

Project objectives

- 2 methods :
 - Learning To Act by Prediction the Future $(\mathbf{DFP})^2$
 - Playing FPS Games with Deep Reinforcement Learning (Arnold)³
- Replicates each article's main results in Doom
- Optimize the methods
- Evaluation of the methods in an other environment

³Guillaume Lample and Devendra Singh Chaplot. "Playing FPS Games with Deep Reinforcement Learning.". In: *Proceedings of AAAI*. 2017. The second se

²Alexey Dosovitskiy and Vladlen Koltun. "Learning to Act by Predicting the Future". In: *CoRR* abs/1611.01779 (2016). arXiv: 1611.01779. URL: http://arxiv.org/abs/1611.01779.

Learning To Act by Prediction the Future

At each game time step t : predict future measurements

<ロト<型ト<差ト<差ト<差ト 5/29

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion
Introduction to the DED model					

Introduction to the DFP model

۲

□ > < 個 > < E > < E > E
 6/29

Introduction to the DFP model

We want to specify which measurements we care about at any given time

At each game time step t:

<ロト</th>
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日
日

- No scalar reward.
- Trained on experiences previously collected : **Supervised learning**
- Predict future measurement for 3 different future time steps $\tau = (8, 16, 32).$

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion
		_	_		
Experiments					

Two given scenarios :

Name	Health gathering	Battle
Image		
Nb Actions	4	8
Measurements	(Health)	(Ammo,Health,Kills)

Health Gathering scenario

• Basic training from the article : episode limited to 525 steps.

• Training with longer episodes : episode limited to 2100 steps.

Training Testing	short episodes	long episodes
long episodes	658	1166

Figure: Life time (Number of step of an episode)

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion
		Health Ga	athering scena	ario	

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion
		Battle	sconario		
		Dattie	e scenario		

• Goal vector input random in [-1,1] during learning.

<ロ > < 団 > < 臣 > < 臣 > < 臣 > 臣 2/29

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion
		- ·			

Battle scenario

• Training with short and long episodes

Training Testing	short episodes	long episodes
unlimited episodes	2263	3690

Figure: Life time (Number of step of an episode)

• Choice of the input goal vector at inference time (*Ammo*, *Health*, *Kills*).

Training Testing	Random goal in $[-1,1]$	
(0.5, 0.5, 1)	35.1	
(1, 1, 1)	27.2	
(0,0,1)	3.2	

Figure: Kill / Death ratio

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion

Battle scenario

⁴Guillaume Lample and Devendra Singh Chaplot. "Playing FPS Games with Deep Reinforcement Learning.". In: *Proceedings of AAAI*. 2017. = + (=) = 15/20

<ロト<部ト<基ト<基ト<基ト 16/29

<ロト<部ト<差ト<差ト<差ト 17/29

	_	_			
Introduction	DFP	Arnold	DFP with features	Comparison Conclusio	on

Deep Recurrent Q-Networks (Action)

Figure: Initial DRQN model⁵.

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion

Deep Recurrent Q-Networks (Action)

Figure: DRQN model with features⁶.

⁶Guillaume Lample and Devendra Singh Chaplot. "Playing FPS Games with Deep Reinforcement Learning.". In: *Proceedings of AAAI*. 2017. Example 2017.

12/36

ヘロト 人間 とくほとくほとう

æ

Conclusion

Experiments : Deathmatch

Figure: Plot of K/D score of action network on limited deathmatch as a function of training

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusion

Deathmatch Video

–	 I I statute to search	· · · · · · · · · · · · · · · · · · ·	

Experiments : Health gathering

Figure: Plot of average Survival time on Health gathering supreme as a function of training

Introduction	DFP	Arnold	DFP with features	Comparison	Conclusio

Use game features information on DFP

Scenario : Health gathering Game features = {medikit, poison}

Figure: Life time during training with and without item detection

Experiment

Scenario : Battle // Learning with random goal in [-1, 1], testing with fixed goal (0.5,0.5,1). Game features = $\{enemy\}$

Figure: Kill / Death ratio during training with and without enemy detection.

æ

Introduction

Arnold

DFP with features

Comparison

Conclusion

Comparison : Health gathering

Both methods learned on the very same scenario.

	DFP	Arnold
Life time (nb of steps)	4664	1283

<ロト<日本</th>
 < 日本</th>
 < 14</th>
 <th</th>
 < 14</th>
 < 14</th>

Introduction

Arnold

DFP with features

Comparison

Conclusion

Comparison : Defend the center

Methods learned on different battle scenarios.

	DFP	Arnold
Kill/Death	8.9	8.6

<ロト < 回 ト < 臣 ト < 臣 ト 三 2000

Introduction	DFP	Arnold	DFP with features	Comparison
--------------	-----	--------	-------------------	------------

What we have done ...

Conclusion

<ロト<型ト<差ト<差ト<差ト 28/29

- Comparison of two different RL formulations : Q-learning (Arnold) vs Supervised Learning (DFP).
- Replicated the main results of both articles.
- Improved the DFP network with ideas from the Q-learning network.

To go further ...

- Optimize the parameters.
- Use Arnold navigation / action network split on the DFP method.
- Make them play against each other
- Adapt to an other 3D environment : CARLA (autonomous driving) and MINOS (Indoor navigation).

<ロト<型ト<差ト<差ト 29/29